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Performance of Fuzzy ART neural network and hierarchical clustering

for part–machine grouping based on operation sequences

S. PARK{ and N. C. SURESH{*

The problem context for this study is one of identifying families of parts having a
similar sequence of operations. This is a prerequisite for the implementation of
cellular manufacturing, group technology, just-in-time manufacturing systems
and for streamlining material flows in general. Given this problem context, this
study develops an experimental procedure to compare the performance of a fuzzy
ART neural network, a relatively recent neural network method, with the per-
formance of traditional hierarchical clustering methods. For large, industry-type
data sets, the fuzzy ART network, with the modifications proposed here, is cap-
able of performance levels equal or superior to those of the widely used hierarch-
ical clustering methods. However, like other ART networks, Fuzzy ART also
results in category proliferation problems, an aspect that continues to require
attention for ART networks. However, low execution times and superior solution
quality make fuzzy ART a useful addition to the set of tools and techniques now
available for group technology and design of cellular manufacturing systems.

1. Introduction

The design of cellular layouts (CL) has received considerable attention from
researchers over the years. Production flow analysis (PFA) of Burbidge (1963,
1989) was one of the first procedures to be developed for this problem. This overall
cell formation problem is a large problem requiring a hierarchical procedure involving
heuristic procedures and subjective inputs at several stages. Within this large
problem context, most of the methods developed to date have addressed the initial
part–machine grouping problem. This problem attempts to identify families of parts
that require the same set of machines without considering the sequence in which they
are required. This addresses, in effect, the creation of job shop-like cells, or there is
often a tacit assumption that material flows and minimization of backtracks within
cells will be considered later in the overall cell formation problem.

A new research stream has emerged in recent years emphasizing the importance
of considering operation sequences in part–machine grouping stage itself (Selvam
and Balasubramanian 1985, Choobineh 1988, Tam 1988, Harhalakis et al. 1990,
Vakharia and Wemmerlöv 1990, Kang and Wemmerlöv 1993, Dahel 1995, Kiang
et al. 1995, Nair and Narendran 1998, Suresh et al. 1999). Considering sequences in
part–machine grouping stage is desirable for several reasons:

. It is aimed directly at streamlining material flows and formation of flow lines.
Flow line cells, with their streamlined work flows, enable a fuller realization of
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the benefits of cellular manufacturing (CM), with less backtracking and mate-
rial handling, easier use of conveyors within the cell, easier operation over-
lapping, and less lead time and work-in-process (WIP) inventory, compared
with job shop-like cells.

. Ignoring operation sequences tends to distort the real extent of material-hand-
ling efforts within and outside the cells, as shown by Harhalakis et al. (1990).

. Identifying similar operation sequences facilitates implementation of just-in-
time (JIT), business process reengineering, etc., serving to streamline materials
flows in general.

. Clustering methods have advanced to a degree that sequences can now be
considered directly, instead of resorting to separate, sequential (sub)optimiza-
tions within the overall, cell formation problem.

In recent years, artificial neural networks (ANNs) have emerged as viable meth-
ods for clustering large, industry-size routings data sets (Dagli and Sen 1992,
Kaparthi and Suresh 1992, Kaparthi et al. 1993, Suresh and Kaparthi 1994). The
pattern recognition capabilities of neural networks, and the ability to work with
large, imperfect data sets, with low execution times render them a useful addition
to the tools and techniques applicable for group technology (GT) and CM.

A notable development with neural networks in recent years is that they have
been found to be applicable for sequence-based clustering, using networks such as
Kohonen’s self-organizing feature maps (SOFM) (Kiang et al. 1995) and Fuzzy
ART neural network (Suresh et al. 1999). They have not been subjected to compre-
hensive and rigorous experimental comparisons with other methods. A key research
question yet to be addressed is whether they outperform traditional methods such as
hierarchical clustering methods.

Based on these promising developments, the objective here is to extend this new
research stream further by introducing additional improvements to the use of Fuzzy
ART network for sequence-based clustering, and comparing the clustering perfor-
mance of this new methodology with traditional, hierarchical clustering methods.
New representation schemes, clustering performance measures and experimental
procedures are also developed in this process.

In this paper, Fuzzy ART neural network and traditional, hierarchical clustering
procedures are used to address the part–machine grouping problem: (1) with con-
sideration of operation sequences and (2) for problem sizes larger than those
considered in past studies.

The problem addressed is a more inclusive version of the first stage, part–
machine grouping problem by considering operation sequences in the clustering
stage itself. Further analysis within the overall cell formation problem is conducted
to assess the impact of various assignments of machine, labour and other resources
to each candidate cell, specific layout decisions, evaluation of capacity, minimization
of load imbalances, and ensuring adequate levels of machine use, material-handling
considerations, labour-related issues such as reassignment of workers to cells, cross-
training them, etc. Given the complexity, simulation methods are widely used in
these latter stages.

This paper is organized as follows. A review of the literature devoted to sequence-
based part–machine grouping, and neural network methods is provided in Section 2.
Section 3 describes a representation scheme and performance measures adopted for
sequence-based clustering. Section 4 provides a description of the algorithms tested.
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Preliminary experimental verification based on small data sets from past literature,
and a discussion of experimental results on industry-type data sets follow in Section
5. Finally, conclusions and research extensions appear in Section 6.

2. Sequence-based part–machine grouping procedures

The cell formation problem has been addressed extensively, using a wide range of
methods, over the last two decades. A taxonomy of these works has been presented
by many researchers (e.g. Chu 1989, Singh 1993, Shafer 1998).

A vast majority of the methods developed have addressed the conversion of the
part–machine incidence matrix into a block diagonal form, from which more detailed
cell design can be conducted. Only a limited number of studies have so far addressed
part–machine grouping with the consideration of operation sequences. These studies
are summarized in Section 2.1.

The use of ANNs for design of CM systems is also of relevance here. A summary
of this research stream up to the point of their use for sequence-based clustering is
presented in Section 2.2.

2.1. Part–machine grouping based on operation sequences
Table 1a provides a list of studies that have addressed part–machine grouping

considering operation sequences. First, Selvam and Balasubramanian (1985) pre-
sented a three-step heuristic procedure involving a part-by-part similarity coefficient
matrix. Each element in the matrix represents material-handling costs incurred by
processing a part in a potential cell (column). Formulated as a set covering problem, a
heuristic solution procedure is then developed.

Despite being an important development for sequence-based grouping, there are
some drawbacks with this method. The use of a part-by-part matrix poses major
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Reference Contribution

Selvam and Balasubramanian (1985) developed a heuristic procedure addressing
sequence-dependent clustering as a set
covering problem

Choobineh (1988) a similarity coefficient to measure commonality
in routing sequences for use with traditional
clustering methods

Vakharia and Wemmerlöv (1990) developed a heuristic procedure for cell
formation based on commonality in material
flows

Tam (1988) a similarity coefficient based on Levenshtein
distance measure and dynamic programming
method to compute sequence-based similarity

Kiang et al. (1995) applied the Kohonen’s SOFM neural network
using the similarity coefficient measure of
Tam (1988)

Nair and Narendran (1998) applied the non-hierarchical clustering procedure
(ZODIAC) of Chandrasekharan and Rajagopalan
(1987) for sequence-based clustering

Suresh et al. (1999) developed a procedure for applying Fuzzy ART
neural network for sequence-based clustering of
large part–machine data sets

Table 1a. Studies on sequence-based clustering.



computational problems for practical situations involving hundreds or thousands of
parts, and numerous integer variables in the formulation. Another problem relates to
the matrix elements, which represent material-handling costs with some debatable
assumptions behind their computation. These ‘similarity coefficients’ are also char-
acterized by an asymmetry and unboundedness, as Vakharia and Wemmerlöv (1990)
pointed out.

Choobineh (1988) presented a two-stage procedure, in which the first stage
involved clustering into part families, and the second, the formation of machine
cells considering other factors such as machine capacities. For the first clustering
stage, the following sequence-based similarity coefficient was proposed:

SikðLÞ ¼
1

L
Sikð1Þ þ

XL
l¼2

CikðlÞ
N � l þ 1

" #
; L � N ð1Þ

where CikðlÞ is the number of common sequences of length l between parts i and k;
and SikðLÞ is the similarity coefficient of order L. This similarity coefficient needs to
be computed for every pair of parts and used within well-known hierarchical cluster-
ing procedures like the single linkage method. Selection of the order L depends on
the characteristics of the data set; the higher this value, the greater the computations
involved. This method also requires the entire part–machine incidence matrix to be
stored in memory. It also entails a part-by-part similarity coefficient method, and
relies on other, traditional clustering methods for actual clustering.

Tam (1988) proposed a sequence-based similarity coefficient based on
Levenshtein distance measure. This measures the similarity between two sequence
vectors as the minimum number of elemental operations required to convert one part
sequence to the other. A dynamic programming algorithm is presented to compute
these coefficients. Consequently, dimensionality problems arise, and this method also
involves a part-by-part similarity coefficient matrix.

Vakharia and Wemmerlöv (1990) presented the following similarity coefficient:

SOpq ¼ 0:5�
X
i2Cpq
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where i ¼ 1; . . . ;M is the machine type index; Aip ¼ 1 if machine type i is required
for part p; else ¼ 0; and Cpq is the set of machine types required for p and q in the
same sequence.

This method first involves scanning the routings to reduce them into a set of
composite operation sequences. The similarity coefficients are based on this reduced
set of composite sequences. This is computationally more amenable than part-by-
part coefficient matrices. Following this, a procedure to allocate machines of each
type is then presented to minimize backtracks within each cell. A similar workload-
oriented procedure also considering possibilities of operation reallocation was pre-
sented by Kang and Wemmerlöv (1993). Both methods address the larger cell-for-
mation problem within which the initial, sequence-based part–machine grouping
may be streamlined by the use of neural network procedures suggested below.

Nair and Narendran (1998) adopted the non-hierarchical clustering procedures
of Chandrasekharan and Rajagopalan (1987) and Srinivasan and Narendran (1991)
for sequence-based clustering. Unlike hierarchical clustering methods, non-hierarch-
ical methods do not necessarily require specifying the number of clusters beforehand.
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However, they require identification of seeds (centroids) for each potential cluster.
Machine cells are formed by progressively allotting other machines to these seeds
based on rules of association (similarity) and clustering efficiency.

2.2. Artificial neural networks for GT/CM
Neural networks have emerged as viable methods for a wide range of applica-

tions in manufacturing (Zhang and Huang 1995). In the context of GT/CM, the
pattern recognition and complexity reduction capabilities of ANNs are of particular
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Application Area

Supervised
learning Unsupervised learning

BP/HF CL IA SOFM ART1 F-ART

Facilitate classification and coding
Kaparthi and Suresh (1991) 	
Design retrieval systems
Kamarthi et al. (1990), Venugopal and
Narendran (1992a, b)

	

Part family formation
Kao and Moon (1990, 1991),
Moon and Roy (1992),
Chakraborty and Roy (1993),
Chung and Kusiak (1994)

	

Liao and Lee (1994) 	
Support GT-based design process
Kusiak and Lee (1996) 	
Block diagonalization
Jamal (1993) 	
Malave and Ramachandran (1991),
Chu (1993), Malakooti and Yang (1995)

	

Venugopal and Narendran (1992a, 1994) 	 	 	
Moon (1990a, b), Moon and Chi (1992),
Currie (1992)

	

Lee et al. (1992) 	
Kusiak and Chung (1991), Dagli and
Huggahalli (1991, 1995), Kaparthi and
Suresh (1992, 1994), Dagli and Sen
(1992), Kaparthi et al. (1993), Liao and
Chen (1993), Chen and Cheng (1995)

	

Burke and Kamal (1992, 1995), Suresh
and Kaparthi (1994), Kaparthi and Suresh
(1994), Kamal and Burke (1996)

	

Capacitated cell formation
Rao and Gu (1994, 1995)
Suresh et al. (1995)

	
	

Sequence-dependent clustering
Kulkarni and Kiang (1995),
Kiang et al. (1995)

	

Suresh et al. (1999) 	

BP, back-propagation network; HF, hopfield network; CL, competitive learning model; IA, interactive
activation model; SOFM, self-organizing feature maps; ART1, ART1 neural network; F-ART, Fuzzy
ART neural network.

Table 1b. Studies on ANNs for group technology/cellular manufacturing.



importance and there is now a substantial body of literature devoted to the use of
ANNs for GT/CM (table 1b).

In the evolution of GT, early methods for designing cells were based on identify-
ing part families through classification and coding systems, based on engineering
design information. Later methods were based more on a direct analysis of routings,
as the part–machine grouping problem. The application of ANNs for GT/CM has
undergone a similar evolution. A detailed review of this literature is presented by
Venugopal (1998) and Suresh (2000).

A notable feature of ANNs is their ability to handle large part–machine data
sets with low execution times (Dagli and Sen 1992, Kaparthi and Suresh 1992).
The low execution times with ART are because they can be operated as leader
algorithms, which do not require the entire part–machine matrix to be stored and
manipulated.

The Fuzzy ART network represents an improvement in the neural network
stream. It can handle both analogue and binary-valued inputs. For part–machine
grouping, Fuzzy ART has been demonstrated to be superior to traditional algo-
rithms such as BEA, ROC2 as well as those of ART1 (Burke and Kamal 1992,
1995, Suresh and Kaparthi 1994).

The use of ANNs for sequence-dependent clustering of routings represents the
most recent development (table 1b). Kulkarni and Kiang (1995) and Kiang et al.
(1995) used the Levenshtein distance measure of Tam (1988) (discussed in Section
2.1) and used Kohonen’s SOFM to cluster parts. The applicability of this technique
was demonstrated using small problem sizes. Since the similarity coefficient compu-
tations depend on dynamic programming logic, it is apparent that problems of larger
size are difficult to solve.

The applicability of Fuzzy ART for sequence-dependent clustering was demon-
strated by Suresh et al. (1999). To apply Fuzzy ART for sequence-based clustering,
sequence information of each part is first captured in a matrix whose rows and
columns comprise all the machine types. This matrix is made to interact with a
two-dimensional array of neurons. Using this architecture, it was again shown
that Fuzzy ART is capable of handling large, industry-size problems, with high
levels of solution quality.

Much work remains to be done in this new stream of inquiry. The present paper
extends and refines this methodology further and performs experimental compari-
sons to evaluate and compare the performance of Fuzzy ART neural network for
sequence-based clustering with the performance of traditional, hierarchical cluster-
ing algorithms. To perform these comparisons, it also develops a suitable experi-
mental procedure.

3. Methodology for experimental comparison

We first develop a methodology for experimental evaluation and a generalized
platform for comparing the performance of neural network methods with other
clustering procedures. In Section 3.1, a representation scheme is first introduced to
capture machine requirements of each part, as well as the sequence in which they are
required. In Section 3.2, a similarity coefficient based on these dual requirements is
developed. As seen below, this is applicable for both neural network and other
clustering methods. Likewise, in Section 3.3, a performance measure for sequence-
based clustering is developed that is applicable for all the methods tested in this
study.
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3.1. Representation scheme for routing sequences
We first introduce the notion of a routing sequence, which is defined as an

ordered listing of the machine types required by a part, in the sequence in which
they are required. For example, if a part P1 is processed on machine types 3, 2, 5, 7, 8
and 4, respectively, its routing sequence is denoted as: <3 2 5 7 8 4>.

Next, the routing sequence for a part is converted into a precedence matrix. The
precedence matrix is a machine type-by-machine type matrix consisting of zeros and
ones. It captures the machine requirements of the part as well as the sequence
pattern. The precedence matrix, MP, for part P is specified such that:

. MPði; iÞ ¼ 1, for every machine type i required in the routing sequence;
MPði; iÞ ¼ 0, for others.

. MPði; jÞ ¼ 1 for (i 6¼ j), if machine type j follows machine type i in the routing
sequence; MPði; jÞ ¼ 0, otherwise.

Thus, in the precedence matrix created: (1) diagonal elements with a value of 1
indicate the machine types required by the part; (2) in a given row, off-diagonal
ones indicate downstream machine types; and (3) in a given column, off-diagonal
ones indicate preceding machine types.

Figure 1 shows the precedence matrices for the part P1 with the routing sequence
< 3 2 5 7 8 4> and a part P2 with the routing sequence <7 8>. Given totally 10
machine types, part P1 uses machine types 3, 2, 5, 7, 8 and 4 in the stated order. In
the precedence matrix for P1 (a 10� 10 matrix), the diagonal elements for these
machine types are ones; for the row corresponding to machine type 3, elements
corresponding to successor machine types (columns 2, 5, 7, 8 and 4) are denoted
as ones. Likewise, the precedence matrix for part P2 is constructed.

The precedence matrix defined here represents an improvement over the prece-
dence matrix proposed by Suresh et al. (1999). The reason for the modification arose
essentially due to certain requirements encountered with industry-type data sets.
Industry-type data sets often involve parts with only one operation, and parts
with very different sequence lengths (number of operations), and it was found that
this modified version of the precedence matrix is more appropriate. These issues are
discussed in Section 3.2.

Several other advantages of using this representation scheme can be mentioned.
The use of a precedence matrix approach provides a convenient platform to capture
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Part P1

< 3 2 5 7 8 4 >

Machine

Type

Part P2

< 7 8 >

Machine

Type

Machine

Type

1

1234567890

Machine

Type

1

1234567890
1
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5
6
7
8
9
10

..........
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..........
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..........
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..........

..........
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Figure 1. Precedence matrices for Parts P1 and P2. Zeroes are shown as ‘.’ for clarity.



machine requirements as well as sequences. As seen below, it is also amenable for use
in neural network architectures such as fuzzy ART, and traditional methods based
on hierarchical clustering. By comparing the precedence matrices of two parts, a
variety of similarity coefficients can be used to assess the level of similarity in
machine requirements and sequences. The use of the binary-valued precedence
matrix offers some computational advantages as well.

3.2. Sequence-based similarity coefficient
Several similarity coefficients have been proposed in past studies for sequence-

based clustering, as seen in Section 2.1. They have been used in a wide range of
algorithms, including hierarchical and non-hierarchical clustering procedures.

In its simplest form, the similarity coefficient between two machines can be
defined in terms of the commonality of parts processed by the two machines. For
instance, McAuley (1972) defined the similarity coefficient between two machines as
the number of parts visiting both machines divided by the number of parts visiting
either of the two machines. This ‘Jaccard coefficient’ can be computed easily from a
part–machine incidence matrix.

Similarly, the similarity coefficient between two parts can also be generated by
comparing the machines required by the two parts. For sequence-based clustering,
the Jaccard similarity coefficient between two parts can be based on their precedence
matrices as:

SAB ¼
MA \MB

MA [MB

; ð3Þ

where MA, MB are the precedence matrices of parts A and B, respectively. This may
also be written in terms of fuzzy set operators as:

SAB ¼
MA ^MBk k
MA _MBk k ; ð4Þ

where ^ is the fuzzy AND operator: ðMA ^MBÞij ¼ minðMAij;MBijÞ; _ is the fuzzy
OR operator: ðMA _MBÞij ¼ maxðMAij ;MBijÞ; and kEk is the number of elements in
the matrix.

Shafer and Rogers (1993a, b) discussed a variety of similarity and distance
measures along with desirable properties for these measures. More specific to
sequence-dependent clustering, the similarity measures proposed by Tam (1988)
and Choobineh (1988) were discussed in Section 2.1, along with some of their limita-
tions.

The similarity coefficient proposed here is based directly on the precedence
matrix. Given the routing sequences of two parts, their precedence matrices are
computed and the Jaccard coefficient between the two precedence matrices is calcu-
lated first. This is then multiplied by a length adjustment factor (which is used for a
set of reasons described below). Thus, the similarity coefficient, SAB, between parts A
and B is defined as:

SAB ¼
MA ^MBk k
MA _MBk k �

maxð MAk k; MBk kÞ
minð MAk k; MBk kÞ ; ð5Þ

where MA, MB are the precedence matrices of parts A and B, respectively.
The need for the length adjustment factor can be explained as follows. In figure 1,

the routing sequence of part P1 is <3 2 5 7 8 4>, while the routing sequence of part

3192 S. Park and N. C. Suresh



P2 is <7 8>. The length of routing sequence for P1 is 6, and that of P2 is 2. Given the
precedence matrices shown in figure 1, the first Jaccard similarity coefficient term can

be computed as 0.14. However, one may argue that the level of similarity should

equal 1, since the routing sequence for P2 is a substring of the routing sequence for

P1, resulting in very similar material flows. The only difference may be that P2 has to

skip some operations that P1 has. After applying the length adjustment factor, it is

seen that the similarity coefficient becomes 1.

Figure 2 shows the rationale behind this revised similarity coefficient, between

two parts A and B, for four different cases. The routing sequence of A is given to be

<1 2 3 4 5> and there are six machine types in total.
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Part A

Part A

<1 2 3 4 5>

Machine

Type

M/c Type 123456
1
2
3
4
5
6

11111.
.1111.
..111.
...11.
....1.
......

Case 1 Case 2

Part B

<2 4 5>

Machine

Type

Part B

<5 4 3 2>

Machine

Type

M/c Type 123456 M/c Type 123456
1
2
3
4
5
6

......

.1.11.

......

...11.

....1.

......

1
2
3
4
5
6

......

.1....

.11...

.111..

.1111.

......

Case 3 Case 4

Part B

< 4 >

Machine

Type

Part B

< 6 3 5 1 >

Machine

Type

M/c Type 123456 M/c Type 123456
1
2
3
4
5
6

......

......

......

...1..

......

......

1
2
3
4
5
6

1.....
......
1.1.1.
......
1...1.
1.1.11

Alternative Similarity Coefficients Case 1 Case 2 Case 3 Case 4

Jaccard Coefficient

(using precedence matrix of Suresh et al. 1999)

0.3 0.0 0.0 0.07

Jaccard Coefficient

(using proposed precedence matrix)

0.4 0.19 0.06 0.15

Proposed Similarity Coefficient

(proposed precedence matrix & length-adjustment)

1.0 0.29 1.0 0.23

Figure 2. Alternative computation of similarity coefficients.

Alternative similarity coefficients Case 1 Case 2 Case 3 Case 4

Jaccard coefficient
(using precedence matrix of Suresh et al. 1999)

0.3 0.0 0.0 0.07

Jaccard coefficient
(using proposed precedence matrix)

0.4 0.19 0.06 0.15

Proposed similarity coefficient
(proposed precedence matrix and length adjustment)

1.0 0.29 1.0 0.23



. Case 1: Routing sequence of part B is a subset of that for part A. The routing
sequence of B is given as <2 4 5>. This is similar to the case of parts P1 and P2
above. If the precedence matrices of A and B were defined as in Suresh et al.
(1999), it would yield a Jaccard similarity coefficient of 0.3. Using the Jaccard
coefficient on the modified precedence matrix proposed here would yield a
similarity coefficient of 0.4. However, the desirable similarity coefficient of 1
is obtained only after applying the length adjustment factor.

. Case 2: Routing sequence of B is linearly opposite to that of part A. The
routing sequence of B is <5 4 3 2>. In this instance, note that there is complete
commonality in usage of machine requirements among parts A and B, but the
sequence of machine usage is unidirectionally opposite to each other. If the
precedence matrix is defined as in Suresh et al. (1999), the Jaccard similarity
coefficient equals 0. Using the modified precedence matrix proposed here yields
a Jaccard coefficient of 0.19. After applying the length adjustment factor the
similarity coefficient equals 0.29.

. Case 3: Part B requires only one operation. The routing sequence of B is <4>.
A Jaccard similarity coefficient of the precedence matrices of A and B, as
defined in Suresh et al. (1999), would yield a value of 0.0 (not defined), and
with the precedence matrices as defined here, a Jaccard coefficient of 0.06. Both
these values are very low. However, after applying the length adjustment factor
to the latter, the similarity increases to a value of 1.0.

. Case 4: Part B shares some machines and operation sequences with part A. The
routing sequence of B is <6 3 5 1>. In this case, the similarity coefficient,
computed based on the modified precedence matrix and the length adjustment
factor, yields a value of 0.23, given some commonality in machine usage and a
weak commonality in sequence of usage.

From the above examples, the need for both modification of the precedence matrix
and the introduction of length adjustment factor is clear. A performance measure is
now defined for evaluating the effectiveness of the two classes of clustering methods
tested here.

3.3. Performance measure for sequence-based clustering
Many performance measures have been developed for clustering applications

over the years. These include bond energy (McCormick et al. 1972), grouping effi-
cacy (Kumar and Chandrasekharan 1990) and bond efficiency (Nair and Narendran
1998). Many of these measures are based on resulting block diagonal structures. The
proportion of elements outside the blocks (‘exceptional elements’) and voids within
blocks are used to evaluate clustering efficiency. The part–machine incidence matrix
does not include sequence in which machines are used, rendering these measures
inapplicable for sequence-based clustering.

A second drawback relates to the fact that the clustering problem encountered in
practice is one of parts versus machine types (instead of parts versus machines). In
most job shops, multiple copies of machines exist for several machine types. These
pools of similar machines are partitioned and may be assigned to different cells. The
definition of the traditional part–machine-grouping problem does not correspond
well with these job-shop realities (Suresh et al. 1995).

For monitoring the effectiveness of sequence-based clustering, we use the
cohesion measure developed by Kiang et al. (1995). The cohesion measure has
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been selected for several reasons: (1) it is a single, joint measure that succinctly
captures clustering efficiency without relying on separate measures for exceptional
elements and voids within blocks; (2) it is amenable to part versus machine-type
(instead of part versus machine) situations which correspond to shop floor reality;
and (3) it is amenable to clustering which includes operation sequences as well.

The cohesion measure essentially measures the level of similarity within each
cluster identified. It is computed as follows. After applying a clustering algorithm,
the resulting clusters (part families) are examined, and the cohesion of each cluster is
computed. The cohesion of each cluster is defined as the average of the dissimilarity
coefficients between every pair of parts within the cluster. This is calculated by
summing up dissimilarities (defined as one minus similarity) and dividing by the
number of possible part pairs in the cluster. Thus, the mean cohesion of cluster k,
Ck, is defined as:

Ck ¼

P
x<y
ð1� SxyÞ

nk

2

� � ; ð6Þ

where part x; y 2 cluster k and nk is the number of members in cluster k. Next, the
overall cohesion measure for all clusters, Coverall, is calculated as:

Coverall ¼

P
k

ðnk � 1ÞCk

n� c ; ð7Þ

where n is the number of all inputs (parts) and c is the number of clusters. This is
simply the weighted average of mean cohesion values of all clusters.

Note that the lower the value of Ck, the better the cohesion of parts within the
cluster, since the mean cohesion is the average of dissimilarities. One aspect became
known in this study regarding this measure. When the number of clusters identified
by an algorithm is large, the overall cohesion measure tends to decrease, indicating
better clustering. This is because as the number of clusters increases, there are a
greater number of smaller clusters consisting of very similar parts within. The
extreme case occurs when only one part is assigned to each cluster. However, this
effect was pronounced only when the number of clusters was very large. For the sake
of comparability, this clustering effectiveness measure was adopted here, with the
following requirement, however. To ensure proper comparison, several numbers of
resulting clusters were prespecified and kept the same for the various clustering
methods compared here.

4. Algorithms tested

Two classes of clustering algorithms, hierarchical clustering methods and Fuzzy
ART/merge method, were compared. In order to initiate systematic comparisons of
neural networks with other methods, we considered hierarchical methods that repre-
sent the earliest among clustering methods. They are now widely implemented in
many statistical software packages. For this study, the hierarchical clustering algo-
rithms within SAS (SAS Institute 1989) were used, and they included the single
linkage (SLINK), complete linkage (CLINK), average linkage (ALINK), Flexible
beta (FLEXIBLE) and Ward’s minimum variance (WARD) methods. These are
briefly described below, along with the Fuzzy ART/merge method.
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4.1. Hierarchical clustering methods
Hierarchical (agglomerative) clustering has been widely used for GT part family

formation problems. Studies such as DeWitte (1980), Waghodekar and Sahu (1984),
Seifoddini and Wolfe (1987), Mosier (1989) and Gupta and Seifoddini (1991) pro-
vide a description of each method.

Hierarchical clustering involves two essential components: (1) a metric for defin-
ing the relationship between cluster entities (e.g. parts within a family) and (2) an
algorithm for using the metric to measure relationships among clusters (e.g. part
families). Typically, each entity (part) begins as a cluster by itself, and the two most
similar entities are merged to form a new cluster that may replace prior clusters, and
the merging process repeats until only one cluster is left. This is often viewed in terms
of a dendogram (figure 3).

The similarity between two elements or clusters can be converted to a distance
measure by setting distance as dissimilarity (or one minus similarity). The distance
between two clusters can be defined either directly or combinatorially (Lance and
Williams 1967), i.e. by an equation for updating a distance matrix when two clusters
are joined. A combinatorial formula, which defines the next distance relationship
after a merger has occurred, is often used to reduce computational redundancy. We
next briefly describe the procedures adopted for the various hierarchical clustering
methods tested in this study.

4.1.1. Single linkage method (SLINK)
SLINK defines the distance between two observations as the minimum distance

between an observation in one cluster and an observation in the other cluster. Thus,
distance between two clusters CK and CL, is defined by:

DKL ¼ min
i2Ck; j2CL

dðxi; xjÞ ð8Þ
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where dðxi; xjÞ is the distance between two observations xi, and xj. The definition of
the distance measure is equivalent to the following combinatorial formula:

DJM ¼ minðDJK ;DJLÞ: ð9Þ

In all the combinatorial formulae given here, it is assumed that clusters CK and CL

are merged to form CM , and the formula gives the distance between new cluster CM

and any other cluster CJ .
SLINK has many desirable properties including simplicity and minimal compu-

tation requirement (Hartigan 1981). Once pairwise dissimilarities are calculated and
the distance (dissimilarity) matrix is constructed, the distance matrix can be used to
develop the dendogram that represents the part families at different thresholds.
SLINK is desirable when it is necessary to detect outliers, because outliers, with
their large distances between other entities, are combined into an existing cluster at
the very last stage. However, SLINK is often criticized because of ‘the chaining
problem’: two part families may join because two of their members are similar
while the remaining members may remain far apart.

4.1.2. Complete linkage method (CLINK)
In CLINK, the distance between two clusters is opposite of SLINK: the

maximum distance between an observation in one cluster and an observation in
the other:

DKL ¼ max
i2Ck; j2CL

dðxi; xjÞ: ð10Þ

The combinatorial formula for CLINK is:

DJM ¼ maxðDJK ;DJLÞ: ð11Þ

Like SLINK, CLINK is computationally simple and can use a distance matrix to
develop a dendogram. With CLINK, in contrast to SLINK, moderate outliers can
distort the clustering by merging them instead of merging other clusters (e.g. a cluster
that consists of many similar observations with a few dissimilar ones).

4.1.3. Average linkage method (ALINK)
In some ways, ALINK attempts to overcome chaining problem in SLINK and

clustering bias and distortion in CLINK. The distance between two clusters is the
average distance between pairs of observations, one in each cluster:

DKL ¼
1

nKnL

X
i2CK ; j2CL

dðxi; xjÞ; ð12Þ

where nK is the number of observations in CK . The combinatorial formula for
ALINK is:

DJM ¼
ðnKDJK þ nLDJLÞ

nK þ nL
: ð13Þ

In ALINK, the distance matrix should be revised whenever a new cluster is formed.
ALINK tends to join clusters with small variances and is slightly biased toward
producing clusters with the same variance (SAS Institute 1989).
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4.1.4. Flexible beta method
The Flexible beta method, developed by Lance and Williams (1967), defines the

combinatorial formula as follows:

DJM ¼ ð1� �ÞDJK þDJL

2
þ �DKL: ð14Þ

Parameter � is chosen by default as �0:25 in the CLUSTER procedure of SAS if not
specified (SAS Institute 1989), but for data with many outliers, smaller values have
been suggested (Milligan 1989). It appears that Flexible beta method has not been
used in cell formation study so far, hence it may be useful to test the performance of
this method.

4.1.5. Ward’s minimum variance method (WARD)
WARD does not merge two clusters based on the similarity or distance between

them but merges them based on the difference of ANOVA sums of squares before
and after merging, i.e. it minimizes the within-cluster sum of squares. When a new
cluster is generated, the within-cluster sum of squares is minimized over all partitions
obtainable by merging two clusters from the previous generation. This makes
WARD the most time-consuming hierarchical clustering algorithm. It tends to
join clusters with a small number of observations and is strongly biased toward
producing clusters with roughly the same number of observations. (SAS Institute
1989). It is also sensitive to outliers because an extreme outlier can increase the
within-cluster sum of squares significantly.

4.2. Fuzzy ART/merge algorithm: a revised procedure
The Fuzzy ART structure for sequence-based clustering, introduced in Suresh et

al. (1999), was modified in the present study. We use the same basic structure, but it
is followed by a new merging procedure. This is referred to here as the Fuzzy ART/
merge method.

The merge procedure was developed for two basic reasons: (1) consistent with the
experimental design adopted here, the merge procedure served to equalize the
number of clusters identified by Fuzzy ART to a prespecified value and (2) the
merge procedure also served to counter the category proliferation problem inherent
to all ART networks. The network architecture is shown in figure 4 and a summary
of the algorithm in figure 5.

In this architecture, two levels of neurons are required (figure 4). The upper layer
consists of neurons (k ¼ 1; 2; . . . ;W), each of which eventually comes to represent
one part family identified. The lower layer consists of a M�M matrix of neurons
(i; j ¼ 1; 2; . . . ;M), which interfaces with the M�M precedence matrix for each
part.

Step 1. Initialize network parameters: first, the weight matrix connecting upper and
lower-level neurons is initialized to values of one: W1ij  1 for
i; j ¼ 1; 2; . . . ;M; where M is the number of machine types. In addition,
values for the choice (�), learning (�) and vigilance (�) parameters are
also specified: �, � 2 ½0; 1�: The choice parameter seems to have little
impact for this application (Suresh and Kaparthi 1994). The values for �
and � are between 0 and 1. The � value used in Step 7 specifies the speed with
which the exemplars are adapted in response to new inputs, while � specifies
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the level of similarity between new inputs and existing exemplars. Higher �
values result in more number of smaller families of parts, with high degrees
of similarity within.

Step 2. Input conversion: the routing sequence for a part is read and converted into
M�M precedence matrix I. The M�M matrices of lower-level neurons
interact with these input values.

Step 3. Calculate choice function: for every upper-level neuron k � c, we compute:

Tk ¼
I ^Wkk k

�þ Wkk k :

Step 4. Selection of best-matching node: select the best-matching upper-level neuron,
	, whose exemplar: T	 ¼ maxfTkg.

Steps 5 and 6. Resonance test and mismatch reset: next, it is necessary to check
whether this ‘best-match’ meets the specified level of similarity (�). If the
selected exemplar passes this resonance test, the best-matching exemplar is
updated using a learning function. Otherwise, T	 is set to �1, so that during
subsequent iterations, the input commits to the last output node, and a new
node is created and initialized. Formally, Steps 5 and 6 are stated as:
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If
I ^W	k k

Ik k � �; go to Step 7:

Set T	 ¼ �1 and go to Step 4:

Step 7. Learning step: the best-matching exemplar is updated using the learning
law:

W
new
	 ¼ �ðI ^W

old
	 Þ þ ð1� �ÞWold

	 :

Step 8. If 	 ¼ c, create new node: if 	 ¼ c, increase c by 1, and setWcij ¼ 1 for all i, j.
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Step 9. Repeat: go to Step 2 unless no more input is left.
Step 10. Iteration step: if clustering result converges (i.e. cluster membership solu-

tion for the current iteration equals that of the previous solution) or current
iteration reaches a predetermined maximum number of iterations, go to the
merge procedure. Before we go to the next iteration with the same set of
inputs, weights do not change for the nodes that contain more than one
part in its cluster. Nodes with only one part are deleted.

4.2.1. Merge procedure
Next, the steps involved in the merge procedure are summarized below.

Step 1. Create group matrices: from the clusters resulting from Fuzzy ART, create
group matrices as follows:

Glij ¼
P

Iij

nl
for all I 2 Cl ðcluster l ¼ 1; 2; . . . ; cÞ;

where nl is the number of members in cluster. The group matrix is simply an
average of the input vectors in the category.

Step 2. Calculate similarities between groups: after creating group matrices, simila-
rities between groups are calculated so that the merging may occur based on
these. Similarity between group l and m is defined as:

Slm ¼
Gl ^Gmk k
Gl _Gmk k �

maxð Glk k; Gmk kÞ
minð Glk k; Gmk kÞ for l > m ðl;m ¼ 1; 2; . . . ; cÞ:

Step 3. Find maximum similarity: next, we find two groups, r and s, having the
maximum similarity as candidates for merging: $$

Srs ¼ max
ðl>mÞ

Slmf g:

Step 4. Similarity test: if Srs > 
, proceed to Step 5; else, stop the algorithm.
Merging occurs with two most similar groups if the similarity between
two groups Srs > 
.

Step 5. Merge the groups: group s is merged into group r, such that:

Grij ¼
Grk k

Grk k þ Gsk k �Grij þ
Gsk k

Grk k þ Gsk k �Gsij

Gsij ¼ 0; for all i; j:

Step 6. Update similarities: the similarity values, Srk are updated, and Ssk values are
set to zero for k ¼ 1; 2; . . . ; c: Go to Step 3.

Thus, the above merging process continues until the maximum similarity between
groups does not meet the desired minimum merging similarity (
).

5. Experimental evaluation

Before developing the experimental procedure on large, industry-type data sets,
preliminary validation using the few, prior data sets is first performed. Section 5.2
first summarizes the characteristics of industry-type routings data sets, providing
the rationale behind the data sets generated for this series of experiments. This is
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followed by a discussion of the experimental design and experimental results in
Section 5.3.

5.1. Preliminary validation using prior data sets
Prior data sets for sequence-dependent grouping are somewhat limited. All three

data sets available from the literature (from Tam 1988, Harhalakis et al. 1990, Nair
and Narendran 1998) were used for preliminary validation. Both hierarchical clus-
tering methods and Fuzzy ART/merge were tested on these data sets, and the results
are shown in tables 2–4.

Table 2 shows the results using the data set assumed by Tam (1988), which were
also used by Kiang et al. (1995) to test the performance of Kohonen’s SOFM neural
network. This is the smallest of the three data sets, consisting of 19 parts and 12
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1 2 3 4 5 6 7 8 9 10 11 12

1 1 . . 2 . . . 3 4 . . .

2 1 2 . 4 . 3 6 5 . . . .

3 1 2 . 3 . . 4 5 6 . . .

4 1 . . 2 . . 3 . 4 . . .

5 1 . . . . 2 4 . 5 3 . .

6 . . . . . 1 3 4 5 2 . .

7 . . . 2 . 1 . 3 4 . . .

8 . 3 1 5 2 4 . 6 7 . . .

9 . . 1 4 2 3 . 5 6 . . .

10 . . 1 3 . 2 . 4 . . . .

11 . . . . . 1 . . . . . 2

12 . . . . . . 2 . . . 1 3

13 . . . . . . 3 . . 2 1 4

14 . . . . . . 2 . . 3 1 .

15 . . . . . . . . . 2 1 .

16 . . . . . . . . . . 1 2

17 . . . . . . 2 . . . 1 3

18 . . . . . 1 2 . . 3 . .

19 . . . . . . 2 . . 1 . .

Cluster

Kiang et al.

solution

Fuzzy ART/merge

solution

Best hierarchical clustering

solution (flexible beta)

Cluster membership (two clusters)

1

2

1 2 3 4 5 6 7 8 9 10 11 18

12 13 14 15 16 17 19

1 2 3 4 5 6 12 13 14 15 16 17 18 19

7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11 18 19

12 13 14 15 16 17

Cluster membership (three clusters)

1 1 2 3 4 5 6 11 18 1 2 3 4 5 6 18 1 2 3 4 7 8 9 10 11

2 7 8 9 10 7 8 9 10 11 5 6 18 19

3 12 13 14 15 16 17 19 12 13 14 15 16 17 19 12 13 14 15 16 17

Cluster membership (four clusters)

1 1 2 3 4 1 2 3 4 1 2 3 4

2 5 6 11 18 5 6 18 5 6 18 19

3 7 8 9 10 7 8 9 10 11 7 8 9 10 11

4 12 13 14 15 16 17 19 12 13 14 15 16 17 19 12 13 14 15 16 17

Table 2. Results for the data set of Tam (1988).



machines, with each part requiring two to seven operations. The clustering results

are shown for number of clusters equal to 2, 3 and 4. The order of feeding inputs was

randomly selected since clustering results often may vary with the order of inputs in

many algorithms. For Fuzzy ART, the parameters assumed were: � ¼ 0:1, � ¼ 0:2
and � ¼ 0:7. Table 2 shows the clustering solutions resulting from the method of

Kiang et al. (1995), the Fuzzy ART method and hierarchical clustering using the

Flexible beta method. There are minor differences in the clustering solutions, but

there is generally good agreement among the solutions.

Table 3 shows the clustering results for the data set of Harhalakis et al. (1990),

with the number of clusters being 4 and 5. This data set consists of 20 parts and 20

machines. The solutions shown include those of Harhalakis et al., the Fuzzy ART/

merge and the hierarchical clustering using the Ward method. The parameters for
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 . . . . . . . 3 . . 1 . . . . . 4 . 5
2 . 3 2 . . . . . . . 1 . . . . . . . . .
3 . . . . . . . 1 . . . . . . . . . . 3 2
4 . 3 1 . . . . . . 4 2 . . . . . . . . .
5 . . . 1 . 3 4 . . . . . . . 2 . . . . .
6 . . . . 5 . . . . . 1 . . 2 . 3 4 . . .
7 . . . . 1 . . . . . . . . . . 2 3 . . .
8 . . . 5 . . 3 . 4 . . . 2 . 1 . . . . .
9 4 . . . . . . . 2 . 3 5 . . . . . 1 . .
10 . . . . . . . 3 . . . . . . . . . . 1 2
11 . . 3 . . . . . . . 1 . . 2 . . . . . .
12 5 . . . 3 . . . 1 . . 4 . . . . . 2 . .
13 . . . . . 1 2 . . . . . . . 3 . 4 . . .
14 3 4 . . . . . 1 . 2 . . . . . . . . . .
15 . . . . . . . . . . . . 1 2 . 3 4 . . .
16 . . . . . 3 2 . . . . . . . 1 . . . 4 .
17 2 . . . . . . . 1 . . 3 . . . . . . . .
18 . . . . . . . 1 . 4 . . . . . . . . 2 3
19 . 2 1 . 4 . . . . . 3 . . . . . . . . .
20 3 . . . . . . . . 2 . 4 . . . . . 1 . .

Cluster
Harhalakis et al.

solution
Fuzzy ART/merge

solution

Best hierarchical
clustering

solution (Ward)

Cluster membership (four clusters)
1 1, 9, 12, 14, 17, 20 1, 9, 12, 17, 20 1, 9, 12, 17, 20
2 2, 4, 6, 7, 11, 15, 19 2, 4, 6, 7, 11, 15, 19 2, 4, 6, 7, 11, 15, 19
3 5, 8, 13, 16 5, 8, 13, 16 5, 8, 13, 16
4 3, 10, 18 3, 10, 14, 18 3, 10, 14, 18

Cluster membership (five clusters)
1 1, 9, 12, 14, 17, 20 1, 9, 12, 17, 20 1, 9, 12, 17, 20
2 2, 4, 11, 19 2, 4, 11, 19 2, 4, 11, 19
3 5, 8, 13, 16 5, 8, 13, 16 5, 8, 13, 16
4 6, 7, 15 6, 7, 15 6, 7, 15
5 3, 10, 18 3, 10, 14, 18 3, 10, 14, 18

Table 3. Results for the data set of Harhalakis et al. (1990).



Fuzzy ART/merge were set to � ¼ 0:1, � ¼ 0:2 and � ¼ 0:5, with 
 ranging from 0.10
to 0.41, to produce the desired number of clusters. The results show good agreement
among the solutions of the three methods. The cluster memberships show that part
14 has been classified either into group {1, 9, 12, 17, 20} or group {3, 10, 18} with very
small changes in clustering performance among the three methods.

Table 4 shows the clustering solutions of Nair and Narendran (1998), the Fuzzy
ART/merge and the hierarchical clustering using Flexible beta method, assuming the
number of clusters to be 8. This data set, consisting of 40 parts and 25 machines,
represents the largest data set from past literature (with the exception of the 1400-
part data set of Suresh et al. 1999). The results show good agreement among the
three solutions, with only minor differences in the part groups identified. It is note-
worthy that part 11 did not join any clusters in Fuzzy ART/merge solution. The
most similar part based on our similarity measure is part 22 having similarity of 0.11
with part 11. Thus, in this case, it may be more appropriate to treat part 11 as an
outlier and increase the desired number of clusters to 9 or more.

For these small data sets, no apparent differences were evident among the three
methods, although the hierarchical clustering methods appeared to fare marginally
better than Fuzzy ART. However, more generalizable conclusions can be made based
on systematic comparisons on larger, more realistic data sets considered below.

5.2. Industry data sets
Past research studies on cell formation for the most part have assumed data sets

that do not correspond too well with routings data one encounters in practice. Many
points of divergence can be noted.

. Grouping problem has been addressed in the past as a matrix of parts versus
machines, and converted into a block diagonal structure. The resulting blocks
are viewed as potential cells. However, in most job shops, many work centres
have multiple copies of similar machines. These pools of machine types are
partitioned, and these machines may need to be allocated to different blocks.

. Most part–machine incidence matrices have assumed a similar number of parts
and machines; in practice, the number of parts tends to be far greater than the
number of machines, resulting in matrices that are far from being square
matrices.

. Assuming block diagonal structures, it is also tacitly assumed that the number
of operations needed for every part is approximately the same. In practice, the
number of operations tends to vary greatly among parts. A significant number
of parts also have a single operation, which can distort clustering results
significantly. The block sizes also tend to vary greatly.

. Problem sizes assumed in most cell formation studies have also tended to be
much smaller than those encountered in practice.

As an example, table 5 summarizes the characteristics of real-world routings data
sets from two Dutch manufacturing firms. The first data set consists of 4415 parts
(processed on 64 machine types). The number of operations is seen to vary from one
to nine, with 34% of the parts requiring only one operation. The routings data set of
the second firm consists of 841 parts (processed on 31 machine types). The number
of operations is seen to range from one to five. Thus, in this study, the data sets
assumed for the following experiments were generated with these characteristics in
mind.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 . . . 5 . . 3 . . 1 . . . . . 4 . 2 . . . 6 . . .
2 2 3 . . . . . . . . . . . . . . 4 . . . . . . . 1
3 . . 2 . . . . . . . 3 . . . . . . . . 1 . . . . .
4 . . . . . . . . . . . 1 . . . . . . . . . . 2 . .
5 . . . 3 . . . . . . . 2 . . . . . 1 . . . . . . .
6 . . . . . . . . . . . 3 . . . 2 . . . . . . 1 . .
7 . . . 3 . . 2 . . 5 . . . . . 4 . 1 . . . . . . .
8 . . . . 1 . . . . . . . . . . 3 . . 2 . . . . . .
9 . . 3 . . . . . . . 4 . . . . . . . . 1 . . . . 2
10 . . . . . . . 2 1 . . . . . . . . . . . . . . . 3
11 . . . . . . . 2 . . . . 3 . . . . . . . 1 . . . .
12 1 . 4 . . . . . . . . . . . . . 3 . . . . . . 2 5
13 . . 3 . . . . . . . 2 . . . . . . . . 1 . . . . .
14 . . 4 . 1 . . . . . 2 . . . . . . . . 3 . . . . .
15 . 4 . . 3 . . . . 5 . . . . . 1 . . 2 . . . . . .
16 . . . 1 . . 3 . . . . . . . . 2 . 4 . . . . . . .
17 . . . . . . 1 . . 3 . . . . . . . 2 . . . . . . .
18 . . . . . . . . . . . . . 3 2 . . . . . . 1 . . .
19 . . . . . . . 1 3 2 . . . . . . . . . . . . . . .
20 . . . . . . . . . . . . . . . 2 . . . . . . 1 . .
21 . . . . . . . 1 3 2 . . . . . . . . . . . . . . .
22 . . 3 . . . . 4 2 . . . . . . . 1 . . . . . . . .
23 . . . . 2 . . . . . . . . . . 3 . . 1 . . . . . .
24 . . . . 1 . . . . . . . . . . 2 . . . . . . . . .
25 . . . . . 1 . . . . . . . . 3 . . . . . 2 . . . .
26 . . . 2 . . . . . . . 3 . . 4 . . . . . . . 1 . .
27 . . . . . . . . . . . 1 . . . . . . . . 3 2 . . .
28 . . . . . . . 2 1 3 . . . . . . . . . . . . . . .
29 . . . . 3 2 . . . . . . . . . . . . . . 1 . . . .
30 . . . 4 . . 2 . . . . . . . . 3 . 1 . . . . . . .
31 . . . . 2 . . . . . . . . . . . 1 . 3 . . . . . .
32 . . . . . . . . . . . . 2 1 3 . . . . . . 4 . . .
33 . . . . . . . . . . 1 . . . . . . . . 3 . . . . 2
34 . . . . . . . . . . . 2 . . . . . . . . . . 1 3 .
35 . . . . . 2 . . . . . . . . 4 . . . . . 1 3 . . .
36 2 3 . . . . . . . . 4 . . . . . 1 . . . . . . . .
37 . . . . . . 3 . . . . 2 . . . . . . . . . . 1 . .
38 . . . . . . . 2 3 . . . . . . . . . . . . 1 . . .
39 . . . . . . 2 . . . . 1 . . . . . . . . . . . . .
40 . . . . . 2 . . . . . . . . 3 . . . . . 1 . . . .

Cluster
Nair and Narendran

solution Fuzzy ART/merge solution

Best hierarchical
clustering solution
(flexible beta)

Cluster membership (eight clusters)
1 1 5 7 16 17 30 1 4 5 6 7 16 17 20 26 30 34 37 39 1 5 7 16 17 30
2 2 12 36 2 12 36 2 12 31 36
3 3 9 13 14 33 3 9 13 14 33 3 9 13 14 33
4 4 6 20 26 34 37 39 11 4 6 20 26 34 37 39
5 8 15 23 24 31 8 15 23 24 31 8 15 23 24
6 10 19 21 22 28 38 10 19 21 22 28 38 10 19 21 22 28 38
7 11 25 27 29 35 40 25 27 29 35 40 11 18 27 29 32
8 18 32 18 32 25 35 40

Table 4. Results for the data set of Nair and Narendran (1998).



5.3. Experimental design
The experiments were based on a replicated clustering procedure (Mosier 1989,

Kaparthi and Suresh 1994, Suresh and Kaparthi 1994). In replicated clustering, a
known solution is generated first and randomly reordered, and these scrambled data
are presented to an algorithm. The clusters resulting from the algorithm are then
compared and evaluated with the known starting solution. This is a procedure
particularly valid for large data sets for which the optimal solution is not known
before hand. Replicated clustering also enables an evaluation of the robustness of the
solution to random reordering of the same data set. Many clustering algorithms are
known to be sensitive to the order in which the data is presented. Past studies have
often assumed a single ordering sequence of inputs and have not assessed this aspect
systematically.

The case of sequence-dependent clustering poses some additional problems com-
pared with conventional experimental designs assuming block-diagonal structures.
The ‘blocks’, which are parts with similar sequences, are not easily defined with
uniqueness, especially when using data with a prespecified degree of imperfection.
In these cases, the generated data sets may not exactly be optimal solutions to start
with.

The data sets were generated as follows. Several ‘base sequences’ were generated
instead of a block diagonal structure. The base sequences form the basis for gen-
erating specific part routing sequences. Data sets belonging to three problem sizes
were generated. The first problem size consisted of 200 parts, 20 machine types and
10 base sequences (200� 20� 10); the second involved 400 parts, 40 machine types
and 20 base sequences; and the third 1000 parts, 80 machine types and 20 base
sequences. The number of parts, the number of machine types and the number of
base sequences were determined based on the literature dealing with part–machine
grouping problem. However, unlike the past study, the number of base sequences is
not the same as the number of part family to be expected because even with parts
generated from a same base sequence may form a different part family if the opera-
tion sequence of one part is significantly different from another part. The base
sequences were generated as follows. First, the length of the base sequences was
set to five for every problem size. Then, depending on the problem size, five numbers
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Length

Data set 1 Data set 2

Frequency % Frequency %

1 1504 34.07 363 43.16
2 1279 28.97 363 38.05
3 921 20.86 114 13.56
4 496 11.23 42 4.99
5 143 3.24 2 0.24
6 46 1.04
7 19 0.43
8 3 0.07
9 4 0.09

Total 4415 100.00 841 100.00

Table 5. Characteristics of two real-world part routings.



of 20, 40 or 80 machine types were generated randomly and listed as the basic form
for the routing sequences. Base sequences allowed for overlaps in machine require-
ments in order to correspond to industry-type data sets.

Surrounding each base sequence, individual part routing sequences were gener-
ated as follows. First, the number of operations for the part were determined as a
randomly generated value between one and eight operations. This was based on the
following probabilities: 5% for one operation; 30% for two and three operations;
20% for four operations; 10% for five operations; 10% for six to eight operations. It
can be easily found that clustering parts with one operation is a trivial problem
although a significant number of parts require only one operation in both of the
industry data sets examined above. After clusters of other parts with more than one
operation are formed, it is clear that clustering an additional part with one operation
into a cluster where that operation has a slack will not change or affect the existing
solution. Thus, we did not consider as many portions of parts with one operation as
it may exist in real world data. The focus rather was on the decreasing pattern for the
number of operations required by a part, which was seen in both industry data sets.

The part routing sequence was generated surrounding a given base sequence and
a specified dispersion level. The dispersion level is a filtering criterion that determines
if the generated part routing sequence is similar to the base sequence, within a
specified level of similarity. The data sets were generated using three levels of dis-
persion: high (similarity level of 0.3), medium (0.5) and low (0.7). Note that the
dispersion level only refers to the limiting similarity level between a part and its
associated base sequence. The dispersion level does not equal the average similarity
value or cohesion measure within the clusters. This unique approach to generate data
sets was used mainly due to the complexity of covering too many cases that a part
with many operations can cause. For example, a part with five operations can have
120 variations in sequences. In addition, unlike the replicated clustering procedure
used in traditional sequence-independent clustering, this approach allows the desired
solution to make more clusters than the number of base sequence.

For a given parameter combination (number of parts, number of machine types
and number of base sequences), 10 different data sets were generated that formed 10
replications for each parameter combination. Thus, 30 specific data sets were gen-
erated and clustered by various algorithms. Each specific data set was clustered using
four hierarchical clustering algorithms (ALINK, CLINK, Flexible beta, Ward meth-
ods) and Fuzzy ART with one iteration and five iterations. Among hierarchical
methods, SLINK was omitted because initial experiments showed that it performed
poorly due to the chaining problem. Most solution results showed one or two very
large clusters, with numerous one-part clusters. Fuzzy ART was operated for either
one or five iterations to test the proposition that the solution quality of this leader
algorithm could be improved further with additional iterations.

The mean overall cohesion measures for the 10 data replications for each para-
meter combination are shown in figures 6–8.

An additional experimental factor was the number of clusters to be formed by
each algorithm. For the first parameter combination, which was based on 10 base
sequences, the number of clusters to be formed by the algorithms was set at 10, 20
and 40. For the second and third parameter combinations, which were based on 20
base sequences, the number of clusters to be formed was set at 20, 40 and 80. Thus,
for each parameter combination, the number of clusters to be formed equalled the
number of base sequences to start with, followed by an increased number of clusters.
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This was done to provide an expanded view of the clustering performance, over a
wider range of the number of clusters formed, and to assess the robustness of well-
performing algorithms over a wider parameter range.

It must be reiterated that normally the number of clusters to be formed is a input
parameter only for hierarchical clustering algorithms; this is not required for Fuzzy
ART-based algorithms. This requirement was enforced on Fuzzy ART merely for
comparability and to suit the performance measure and the experimental design
adopted.

5.4. Results and discussion
First, figures 6–8 show that for all three data sizes, overall cohesion measures

were lower (i.e. the clustering performance was better) for lower levels of dispersion
in the input data. This is consistent for all three data sizes and within every algo-
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Figure 6. Overall cohesion measure ð200� 20� 10Þ: means from 10 data sets.

Dispersion
level

Hierarchical clustering methods Fuzzy ART/merge

Base
value

No. of
clusters

Average
linkage

Complete
linkage

Flexible
beta

Ward
method

One
iteration

Five
iterations

High 0.6819 10 0.7234 0.7756 0.7151 0.7248 0.7854 0.7583
(similarity 20 0.6467 0.6657 0.6317 0.6389 0.6285 0.5884

¼ 0:3) 40 0.5480 0.5878 0.5242 0.5409 0.4386 0.4249

Medium 0.5292 10 0.6560 0.7218 0.6375 0.6462 0.5530 0.5446

(similarity 20 0.5616 0.5910 0.5339 0.5392 0.4562 0.4428
¼ 0:5) 40 0.4385 0.4773 0.4196 0.4272 0.3350 0.3063

Low 0.4309 10 0.6145 0.6861 0.5810 0.5888 0.4527 0.4424

(similarity 20 0.4803 0.5295 0.4644 0.4583 0.3660 0.3517

¼ 0:7) 40 0.3406 0.3897 0.3226 0.3342 0.2493 0.2202



rithm. Thus, for all the methods tested, clustering effectiveness was greater when the

input data was more perfect.

Note that for all three parameter combinations (figures 6–8) and for a given level

of dispersion, the overall cohesion measures decreased when the required number of

clusters was increased. This can been seen consistently for all the algorithms tested.

Thus, it is clear that when more number of clusters were required, both hierarchical

clustering and Fuzzy ART resulted in a greater number of smaller, more cohesive

clusters.

Figures 6–8 also show the results from statistical comparisons among the means.

Values shown in bold were significantly lower than other values, indicating superior

clustering performance. Two or more values shown in bold indicate the absence of

significant differences among the values shown in bold, based on t-tests.

In figures 6–8, the overall cohesion measure for the input data generated is

indicated as the ‘base value’. For instance, in figure 8 (the largest data size), for
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Figure 7. Overall cohesion measure (400� 40� 20): means from 10 data sets.

Dispersion
level

Hierarchical clustering methods Fuzzy ART/merge

Base
value

No. of
clusters

Average
linkage

Complete
linkage

Flexible
beta

Ward
method

One
iteration

Five
iterations

High 0.6922 20 0.7830 0.8337 0.7604 0.7572 0.7454 0.7501
(similarity 40 0.6978 0.7049 0.6701 0.6727 0.6250 0.6231

¼ 0:3) 80 0.5956 0.6284 0.5718 0.5807 0.4709 0.4612

Medium 0.5382 20 0.6786 0.7660 0.6753 0.6696 0.5503 0.5482

(similarity 40 0.5786 0.6157 0.5641 0.5649 0.4634 0.4527
¼ 0:5) 80 0.4638 0.4990 0.4453 0.4557 0.3353 0.3158

Low 0.4357 20 0.6050 0.7042 0.6029 0.6034 0.4481 0.4388*

(similarity 40 0.4908 0.5319 0.4774 0.4755 0.3640 0.3595

¼ 0:7) 80 0.3535 0.4010 0.3460 0.3503 0.2437 0.2263



the high dispersion level, the base value amounts to 0.7060. The number of base
sequences for this parameter combination equals 20. When the required number of
clusters equals this value, the overall cohesion measures obtained using all the algo-
rithms are seen to be above it. The best values are obtained using Fuzzy ART (0.7428
and 0.7441) for one and five iterations, respectively. Since there was no significant
difference between these two values, they are both shown in bold. When the number
of clusters required is increased to 40 and 80, it results in cohesion measures even
lower than the base value itself, indicating that smaller, much more cohesive clusters
have been formed. Note that Fuzzy ART continues to outperform hierarchical
clustering for higher number of clusters. Within Fuzzy ART, no significant difference
is seen between the results from one and five iterations.

Based on the means shown in figures 6 and 7, it is apparent that Fuzzy ART
again significantly outperforms hierarchical clustering, except in the case of high

3210 S. Park and N. C. Suresh

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

High Medium Low

Dispersion Level

O
v
e
ra
ll
C
o
h
e
s
io
n

FM1

FM5

AVG

COMP

FLEX

WARD

BASE

Results for the best algorithm(s) are in bold; no significant difference with the best solution
if two or more in bold; * no significant difference with the base solution.

Figure 8. Overall cohesion measure (1000� 80� 20): means from 10 data sets.

Dispersion
level

Hierarchical clustering methods Fuzzy ART/merge

Base
value

No. of
clusters

Average
linkage

Complete
linkage

Flexible
beta

Ward
method

One
iteration

Five
iterations

High 0.7060 20 0.8084 0.8937 0.7846 0.7787 0.7428 0.7441

(similarity 40 0.7165 0.7921 0.7002 0.6966 0.6761 0.6791

¼ 0:3) 80 0.6489 0.6632 0.6212 0.6242 0.5690 0.5743
Medium 0.5439 20 0.6791 0.8446 0.6545 0.6569 0.5481 0.5493

(similarity 40 0.5858 0.7032 0.5638 0.5667 0.4948 0.4969

¼ 0:5) 80 0.4990 0.5483 0.4692 0.4746 0.3951 0.3933
Low 0.4407 20 0.5706 0.7927 0.5610 0.5551 0.4440 0.4435*

(similarity 40 0.4724 0.6151 0.4590 0.4603 0.3928 0.3980

¼ 0:7) 80 0.3718 0.4375 0.3625 0.3653 0.2945 0.2937



dispersion level and number of clusters equalling the number of base sequences.

From the graphs of figures 6–8, it is clear that the relative advantage with Fuzzy

ART over hierarchical clustering is greater at low and medium levels of dispersion.

Within Fuzzy ART, no significant difference was found between the results

obtained with one iteration and five iterations. This finding tends to dispel the

notion that as a leader (single-pass) algorithm, the clustering effectiveness can be

improved further by using more than one pass or iteration. This is an aspect that

needs to be tested systematically on all ART-based networks as well as other unsu-

pervised neural networks.

Among the hierarchical clustering methods, Flexible beta and Ward’s minimum

variance methods are both comparable in performance, regardless of the dispersion

level and number of clusters. It was also found that for low and medium levels of

dispersion, Flexible beta, Ward and average linkage methods consistently outper-

formed the complete linkage method. This is apparent from figures 6–8. CLINK, as

discussed in Section 3.4.2, tended to inhibit many pairs of clusters, which consisted

of many similar observations with a few dissimilar ones, from joining together.

When comparing the performance of hierarchical clustering with that of Fuzzy

ART, some additional factors need to be considered. Specification of the distance

measure or similarity coefficient is a prerequisite for applying hierarchical clustering

algorithms. This is not a problem in itself. However, with hierarchical clustering, the

major drawback is that it requires computation of similarities for all possible pairs of

parts. Normally, the number of parts is far greater than the number of machines in a

real-world part–machine grouping problem. Thus, computational efforts are much

greater with hierarchical clustering compared with unsupervised neural networks.

In this study, execution times were not monitored since the hierarchical clustering

algorithms were executed using SAS on a mainframe computer, while Fuzzy ART

was executed on a laptop computer. However, the significantly low execution times

of fuzzy ART, compared with traditional algorithms, were demonstrated in past

studies (Suresh and Kaparthi 1994, Suresh et al. 1999). It may be argued that

execution times may not be too relevant for the part–machine grouping problem,

which is often a one-time exercise. However, algorithms with low execution times are

still preferred in the context of real-time, interactive optimization on the part of

analysts and users.

Likewise, in addition to the difficulty of calculating the part-by-part similarity

values at every step, storage requirements can be a problem with hierarchical clus-

tering. With Fuzzy ART, the entire part–machine matrix is not stored in memory;

the only storage required is for the input part matrix, and exemplar vectors asso-

ciated with each high-level neuron. Neural network-based algorithms, in particular,

ART-based algorithms, take advantage of the exemplar vectors, which change inter-

actively with the stream of inputs by changing connection weights between upper

layer neurons and lower layer neurons. The number of clusters should also be pre-

specified when hierarchical clustering method is used, whereas with fuzzy ART, it is

the network parameters that need to be specified.

The category proliferation problem inherent in all ART networks was again

encountered with Fuzzy ART in this study. It was primarily in response to this

aspect, encountered during preliminary experimentation, that the merge feature

was developed. In light of the above experiments, it is evident that this merge

procedure can also be applied to other ART-based networks to counter the category
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proliferation problem. It appears that this has not been suggested in past neural
network research, and represents another contribution of this study.

6. Conclusions

This paper addressed the problem of identifying families of parts with similar
routing sequences. The problem context is one of designing CL or merely streamlin-
ing material flows, as part of the implementation of CM, JIT systems, business
process re-engineering, focused factories, etc. The use of operation sequence infor-
mation in the design of CM systems helps in the formation of flow-line type of cells
as opposed to job-shop type of cells.

Based on promising new developments about the use of the Fuzzy ART neural
network for sequence-based clustering, the objective here was to develop this meth-
odology further by introducing additional improvements to the use of Fuzzy ART
network and by comparing the clustering performance of this new methodology with
traditional, hierarchical clustering methods. New representation schemes, clustering
performance measures and experimental procedures were developed in this process.
Both Fuzzy ART neural network and traditional, hierarchical clustering procedures
were used to address the part–machine grouping problem: (1) with consideration of
operation sequences and (2) for problem sizes larger than those considered in past
studies.

The experiments showed the superior performance of Fuzzy ART over hierarch-
ical clustering for large, industry-type data sets. The category proliferation problem
inherent to all ART networks was again encountered, for which a merge procedure
was developed. It appears that this merge routine can be applied to other unsuper-
vised neural networks as well.

This study provides additional evidence to view Fuzzy ART neural network as a
viable approach for sequence-based clustering of parts and machines. Given good
performance and fast execution times for large data sets, it may be operated within a
decision-support system context for cell design. It may be operated interactively and
alternate configurations may be generated with different vigilance thresholds.

This study opens additional avenues for future research. It appears that further
improvements in computational efficiency are possible through the use of sparse
matrix representations. Other neural networks, particularly Kohonen’s (1984)
SOFM, may also be tested for this problem. The representation scheme developed
in this study may be used for other algorithms as well in addition to developing new
similarity coefficients based on the representation schemes developed for capturing
machine requirements and sequences.

The clustering procedure developed is aimed at the first stage of part–machine
grouping within the overall cell formation problem. Within the overall procedure,
researchers have so far focused on subproblems, striving to develop good procedures
for each phase. There has been a separation of methods used for the early stage and
later stages. With further advances in research methods and for future research to be
meaningful to practitioners, there is a need for integrating these procedures into a
coherent methodology. For instance, it is conceivable that in due course the impact
of using various part–machine grouping procedures can be analysed on shop per-
formance measures such as flow time, tardiness, work in process and cost through
simulation-based procedures. Much work remains to be done in these areas, how-
ever.
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Part–machine grouping procedures also need to be tested further on a wide range
of large, imperfect, real-world routings, for cell formation research to be of greater
relevance to practitioners. This study, along with a few other past works, has made a
modest advance in this regard.
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